
Poznan University of Technology European Credit Transfer System

Faculty of Electrical Engineering

page 1 of 2

STUDY MODULE DESCRIPTION FORM
Name of the module/subject Code

Languages and paradigms of programming 1010331521010334960

Field of study Profile of study
(general academic, practical)

Year /Semester

Information Engineering (brak) 1 / 2
Elective path/specialty Subject offered in: Course (compulsory, elective)

- Polish obligatory

Cycle of study: Form of study (full-time,part-time)

First-cycle studies full-time

No. of hours No. of credits

Lecture: 30 Classes: - Laboratory: 30 Project/seminars: - 6

Status of the course in the study program (Basic, major, other) (university-wide, from another field)

(brak) (brak)

Education areas and fields of science and art ECTS distribution (number
and %)

technical sciences

 Technical sciences

6 100%

 6 100%

Responsible for subject / lecturer:

PH.D.Eng. Beata Jankowska

email: beata.jankowska@put.poznan.pl

tel. +48 61 665 37 24

Wydział Elektryczny

ul. Piotrowo 3A 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1 Knowledge
Student has an elementary mathematical knowledge, including algebra, analysis, logics, theory
of probability, elements of discrete maths and applied maths.

2 Skills
Student can: use programming environments and platforms for coding, running and testing
simple programs in imperative laguages; prepare and show a short presentation of the results
of an executed engineering task.

3 Social
competencies

Student realises the responsibility for his/her work done individually or in a team; also, he/she
is ready to accept the rules of group work.

Assumptions and objectives of the course:

the understanding of different programming styles (and languages); a mastery of choosing an appropriate style and language
to solve a specific problem; a particular competence to design and implement various algorithms in object-oriented style and
language; the clever using of constructs that are typical of object-oriented languages (C++, Java).

Study outcomes and reference to the educational results for a field of study

Knowledge:

1. Student has an organized and theoretically grounded knowledge in the fields of: basic algorithms and their analysing,
techniques of designing algorithms, abstract data structures and their implementation, hard computational problems. -
[K_W04]

2. Student has an organized and theoretically grounded knowledge in the fields of: basic programming constructs, algorithms
implementation, paradigms and styles of programming, methods of verifying program correctness, formal languages and
compilers, programming platforms. - [K_W05]

Skills:

1. Student can design algorithms (with the use of basic algorithmic techniques) and estimate their complexity. - [K_U09]

2. Student can use programming environments and platforms for coding, running and testing simple programs in imperative,
object-oriented and declarative languages. - [K_U10]

3. Student can prepare the documentation of an executed engineering task, including the discussion of the obtained results. -
[K_U03]

Social competencies:

1. Student realises the importance of: executing projects precisely, preserving notational standards and linguistic correctness,
and completing works on time. - [K_K07]

2. Student realises the importance and understands non-technical aspects and effects of computer engineer - [K_K02]

Poznan University of Technology European Credit Transfer System

Faculty of Electrical Engineering

page 2 of 2

Assessment methods of study outcomes

Lecture: written exam.

Labs: rating student's results of input tests, internal tests, programming activity, and his/her solution of an optional project task
(implementation in C++, written documentation).

More than 50% points are necessary for passing the exam and labs.

Course description

Lectures:

Different styles of programming and their classification. Goals and rules of object modeling. The Unified Modeling Language -
the most often used structural and behavioral diagrams. Basic paradigms of object-oriented programming (encapsulation,
inheritance, polymorphism) and their implementation in C++ language. Input/output libraries in C++. Handling errors and
exceptions in object-oriented languages. Function overloading and operator overloading. Dynamic storage management in
object-oriented languages and systems. Generic Programming, the Standard Template Library. Rules of multi-thread
programming. Regular expressions and the Boost.Regex library.

Basic elements of Java programming: byte code, class and object implementation, input/output implementation, packages,
interfaces, multi-thread programming, deprecated applets.

SOLID - five principles of effective object-oriented programming.

Labs:

Designing and implementing algorithms in C++ and Java languages.

Applied methods of teaching: Lectures - interactive lectures, with questions addressed to the whole group of students or to
individual students; lectures supplemented by materials for self-studying in the Moodle e-learning platform;

Labs - university classes supplemented by materials prepared for self-performing of work in the Moodle e-learning platform;
team work.

2017 update: Goals and rules of object modeling. The Unified Modeling Language - the most often used structural and
behavioral diagrams. Regular expressions and the Boost.Regex library. SOLID - five principles of effective object-oriented
programming.

Basic bibliography:

1. Stroustrup B., Język C++. Kompendium wiedzy. Wydanie IV, Helion, 2014.

2. Grębosz J., Symfonia C++ standard. Programowanie w języku C++ orientowane obiektowo. Tom I i II, Wydanie 3B, Helion,
2010.

3. Prata S., Język C++. Szkoła programowania. Wydanie VI, Helion, 2012.

4. Schildt H., Java. Przewodnik dla początkujących. Wydanie VI, Helion, 2015.

5. Darwin I.F., Java. Receptury. Wydanie III, Helion, 2015.

Additional bibliography:

1. Prata S., Język C. Szkoła programowania. Wydanie V, Helion, 2006.

2. Eckel B., Thinking in C++. Edycja polska, Helion, 2012.

3. Eckel B., Thinking in Java. Edycja polska. Wydanie IV, Helion, 2006.

Result of average student's workload

Activity
Time (working

hours)

1. Lectures

2. Labs

3. Final exam and consultations

4. Preparing for labs

5. Preparing for internal tests

6. Preparing for the final exam

30

30

15

30

30

15

Student’s workload

Source of workload hours ECTS

Total workload 150 6

Contact hours 75 3

Practical activities 75 3

